### **Emerging Energy Technology**

Climate Change Steering Committee
Sept. 3, 2014

Roger Duncan

#### **Parameters**

- Technology development to 2050
- Tech most likely to affect GHG goals in Austin
- Time frames near, intermediate and far future.
- Tech development, not deployment

### Tech covered

Efficiency

Wind

Solar

Nuclear

**Fossil Fuels** 

Storage

Other

Robotics, Al and Nanotechnology

#### **Conventional Energy System**



# Sentient Appearing Autonomous







Zero Energy Home



**Distributed Utility** 







Nuclear







W ind

### **Bectric Microgrid**



### **Energy Efficiency**

- Intelligent Efficiency
- Thermal loads
- Appliance Efficiency
- Nanotechnology materials
- Combined Heat and Power
- Integrative Design

#### **Liquid Crystal Windows**



Duncan/Webber April 8, 2013 **8** UT Austin





Spintel s.r.l.



PHASECHANGE Energy Solutions

### Nanopore Insulation





Lovins – Reinventing Fire 2011

### Wind

- On-shore mature tech not much tech change and cost reduction
- Off-shore currently 50-100% higher total lcoe reductions in anchoring and transmission
- Turbines will become even larger
- Stratospheric wind potential
- Low-power wind on buildings, esp. cities not great deal of power to be gained
- Great wind potential in Texas













### Solar

- Great expansion of cheap solar seen
- Utility scale solar expansion
- Rooftop distributed
- BIPV
- Ubiquitous mass area applications
- 3-D printing of solar cells?
- Nanotechnology will lead to solar too cheap to meter











### Solar Generating Windows



### Solar Paints



### Flexible Solar Plastics













PHOTO: MICHELLE MCLOUGHLIN/NEWSCAST/NRG

### TaiPai Dragon Stadium





#### Solar Nanoflowers



### Nuclear

- Generation 4 reactors safer
- Small, modular reactors (SMR)
- SMR for desalinization and microgrids
- Cost continues to be main obstacle

### **Fossil Fuels**

- Coal Carbon Capture and Storage expense and plant energy consumption – slow in development
- Gas no major new technology advances seen
- Oil deepwater drilling and synthetic production from organic sources - algae

## Microturbines are Small and Modular







#### Nanotechnology and Energy





Low cost solar cells



Hydrogen production from water



Catalysts for clean manufacturing



Solid state lighting





Super strong lightweight materials



**Transmission lines** 



**Energy Storage** 





### Conclusions

- Plenty of emerging energy technology to provide 100% GHG free electricity to Austin by 2050
- Texas has abundant renewable energy resources

